tg-me.com/physics_lib/11731
Last Update:
π ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ [2023] Π₯ΡΡΡΠ΅Ρ, ΠΠΎΡΡΡ
ΠΎΡΡ, ΠΠ°Π½ΡΠΎΡΠ΅Π½.
ΠΡΠ΅Π»ΠΎΠΌΠ»ΡΡΡΠΈΠΉ ΡΡΠΏΠ΅Ρ
ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ (machine learning β ML) ΠΈ Π±ΡΡΡΡΡΠΉ ΡΠΎΡΡ ΡΡΠΎΠΉ ΠΎΡΡΠ°ΡΠ»ΠΈ ΡΠΎΠ·Π΄Π°Π»ΠΈ Π²ΡΡΠΎΠΊΠΈΠΉ ΡΠΏΡΠΎΡ Π½Π° Π³ΠΎΡΠΎΠ²ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ML, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π±Π΅Π· ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π·Π½Π°Π½ΠΈΠΉ. ΠΠ΄Π½Π°ΠΊΠΎ ΠΈ ΡΠ΅Π³ΠΎΠ΄Π½Ρ ΡΡΠΏΠ΅Ρ
ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΡΠ΅ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΊΡΠΏΠ΅ΡΡΠΎΠ² β Π»ΡΠ΄Π΅ΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΡΡΡΠ½ΡΡ Π²ΡΠ±ΠΈΡΠ°ΡΡ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΡΡΠΈΠ΅ Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΡΡΡ ΠΈ ΠΈΡ
Π³ΠΈΠΏΠ΅ΡΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ. ΠΠ΅ΡΠΎΠ΄Ρ AutoML Π½Π°ΡΠ΅Π»Π΅Π½Ρ Π½Π° ΡΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΡΠ·ΠΊΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠ° ΠΏΡΡΠ΅ΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ML, ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΊ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΡΠ°ΠΌΠΎΠ½Π°ΡΡΡΠΎΠΉΠΊΠ΅ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΈΠΏΠ° Π²Ρ
ΠΎΠ΄Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
. Π ΡΡΠΎΠΉ ΠΊΠ½ΠΈΠ³Π΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π²ΡΠ΅ΠΎΠ±ΡΠ΅ΠΌΠ»ΡΡΠΈΠΉ ΠΎΠ±Π·ΠΎΡ Π±Π°Π·ΠΎΠ²ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ (AutoML). ΠΠ·Π΄Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ»ΡΠΆΠΈΡ ΠΎΡΠΏΡΠ°Π²Π½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ Π±ΡΡΡΡΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΠ΅ΠΉΡΡ ΠΎΠ±Π»Π°ΡΡΠΈ; ΡΠ΅ΠΌ, ΠΊΡΠΎ ΡΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ AutoML Π² ΡΠ²ΠΎΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅, ΠΊΠ½ΠΈΠ³Π° ΠΏΡΠΈΠ³ΠΎΠ΄ΠΈΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊΠ°.
π Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.
BY Physics.Math.Code
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/physics_lib/11731