Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/physics_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Physics.Math.Code | Telegram Webview: physics_lib/11731 -
Telegram Group & Telegram Channel
Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅_Π²_Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅_машинноС_ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅_2023_RU_+_EN.zip
20.8 MB
πŸ“— Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ машинноС ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ [2023] Π₯ΡƒΡ‚Ρ‚Π΅Ρ€, ΠšΠΎΡ‚Ρ‚Ρ…ΠΎΡ„Ρ„, Π’Π°Π½ΡˆΠΎΡ€Π΅Π½.

ΠžΡˆΠ΅Π»ΠΎΠΌΠ»ΡΡŽΡ‰ΠΈΠΉ успСх коммСрчСских ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ машинного обучСния (machine learning – ML) ΠΈ быстрый рост этой отрасли создали высокий спрос Π½Π° Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ML, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±Π΅Π· ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Π½ΠΈΠΉ. Однако ΠΈ сСгодня успСх практичСского примСнСния Π² Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ стСпСни зависит ΠΎΡ‚ экспСртов – людСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ подходящиС Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ ΠΈ ΠΈΡ… Π³ΠΈΠΏΠ΅Ρ€ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ AutoML Π½Π°Ρ†Π΅Π»Π΅Π½Ρ‹ Π½Π° устранСниС этого ΡƒΠ·ΠΊΠΎΠ³ΠΎ мСста ΠΏΡƒΡ‚Π΅ΠΌ построСния систСм ML, способных ΠΊ автоматичСской ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ самонастройкС нСзависимо ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. Π’ этой ΠΊΠ½ΠΈΠ³Π΅ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ прСдставлСн Π²ΡΠ΅ΠΎΠ±ΡŠΠ΅ΠΌΠ»ΡŽΡ‰ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ машинного обучСния (AutoML). ИзданиС послуТит ΠΎΡ‚ΠΏΡ€Π°Π²Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ для изучСния этой быстро Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉΡΡ области; Ρ‚Π΅ΠΌ, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ AutoML Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΊΠ½ΠΈΠ³Π° пригодится Π² качСствС справочника.

πŸ“˜ Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.



tg-me.com/physics_lib/11731
Create:
Last Update:

πŸ“— Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ машинноС ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ [2023] Π₯ΡƒΡ‚Ρ‚Π΅Ρ€, ΠšΠΎΡ‚Ρ‚Ρ…ΠΎΡ„Ρ„, Π’Π°Π½ΡˆΠΎΡ€Π΅Π½.

ΠžΡˆΠ΅Π»ΠΎΠΌΠ»ΡΡŽΡ‰ΠΈΠΉ успСх коммСрчСских ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ машинного обучСния (machine learning – ML) ΠΈ быстрый рост этой отрасли создали высокий спрос Π½Π° Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ML, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±Π΅Π· ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Π½ΠΈΠΉ. Однако ΠΈ сСгодня успСх практичСского примСнСния Π² Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ стСпСни зависит ΠΎΡ‚ экспСртов – людСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ подходящиС Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ ΠΈ ΠΈΡ… Π³ΠΈΠΏΠ΅Ρ€ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ AutoML Π½Π°Ρ†Π΅Π»Π΅Π½Ρ‹ Π½Π° устранСниС этого ΡƒΠ·ΠΊΠΎΠ³ΠΎ мСста ΠΏΡƒΡ‚Π΅ΠΌ построСния систСм ML, способных ΠΊ автоматичСской ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ самонастройкС нСзависимо ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. Π’ этой ΠΊΠ½ΠΈΠ³Π΅ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ прСдставлСн Π²ΡΠ΅ΠΎΠ±ΡŠΠ΅ΠΌΠ»ΡŽΡ‰ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ машинного обучСния (AutoML). ИзданиС послуТит ΠΎΡ‚ΠΏΡ€Π°Π²Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ для изучСния этой быстро Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉΡΡ области; Ρ‚Π΅ΠΌ, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ AutoML Π² своСй Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΊΠ½ΠΈΠ³Π° пригодится Π² качСствС справочника.

πŸ“˜ Automated Machine Learning: Methods, Systems, Challenges [2019] Frank Hutter, Lars Kotthoff, Joaquin Vanschoren

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.

BY Physics.Math.Code


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/physics_lib/11731

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Physics Math Code from it


Telegram Physics.Math.Code
FROM USA